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Set-Theoretic Problems of Null Completion in Relational Databases
Arthur M. Keller
Computer Science Dept., Stanford University

ABSTRACT. When considering using databases to rep-
resent incomplete information, the relationship between
two facts where one may imply the other needs to be
addressed. In rclational databases, this question be-
comes whether null completion is assumed. That is,
does a (pousibly partially-defined) tuple imply the ex-
istence of tuples that are “less informative” than the
original tuple. We show that no relational algebra, that
assumes equivalence under null completion, can include
set-theoretic operators that are compatible with ordi-

nary set theory.

KEYWORDS. Relational databases, null values, set the-
ory.
CR CATEGORIES. H.2.1, H.1.1, EA.

1. Introduction

Considerable work has been done in incomplete in-
formation [ANSI 75, Codd 79, Goldstein 81, Grant 77,
79, Imielinski 81, 83, Keller 84a, 84b, Lien 79, Lipski
79, Maier 83, Reiter 80, Vassiliou 79, Zaniolo 82]. No
soiution has been completely satisfactory. One prob-
lem with many of the proposed solutions is that they
are incompatible with the rules of ordinary set theory.
We show that no solution that includes the concept of
null completion [Zaniolo 82| can poesibly be compatible
with ordinary set theory.

Onc question that arises when considering incom-
plete information is the relationship between facts and
partial versions of those facts. For example, the f-ct
“Marty has been married to Barbara for seven years”
includes the facts “Marty is married to Barbara” and
“Marty has been married for seven years.”

Consider the following relation encoding the three
facts mentioned above, with the functional dependen-
cies Husband — Wife, YearsMarried and Wife — Hus-
band and YearsMarried. .

This work was supported in part by contract N00039-82-G-0230
(the Knowledge Base Management Systems Project, Prof. Gio
Wiederhold, Principal Investigator) from the Defense Advanced
Research Projects Agency and by contract AFOSR-80-0212 (Uni-
versal Relations, Prof. Jeff Ullman, Principal Investigator) from
the Air Force Office of Scientific Research, both of the United
States Department of Defense. The views and conclusions con-
tained in this document are those of the authors and should not
be interpreted as representative of the official policies of DARPA
or the US Government.

Author's address: Computer Science Department, Stanford Uni-
versity, Stanford, CA 04308-2088.

84 08 390

Husband VWife YearsNarried
Marty Barbara 7
Marty <null> 7
<null> Barbara 7

The information contained in the first tuple in-
cludes the information contained in the other two tu.
ples. Li a static database, all queries answerable from
the entire database are also answerable from the first
tuple alone. However, if we delete the first tuple (say,
in an update asserting that Marty is not married to
Barbara) but retain the other two, we can still answer
some queries asking how long Marty or Barbara have
been married (but not to each other).

The above example illustrates the principle of null
completion {Zaniolo 82, Maier 83]. Tuple ¢ is at least
as informative as tuple s (written ¢t > s) if the non-
null attributes of s have the same values as int. A
database D; is at least as informative as database D,
if for every tuple of Dj there is a corresponding tuple
in D, that is at least as informative. The principle of
null completion says that two databases are equivalent
if they are equally informative.

3. Definitions

We will use nulls to indicate that no information is
known. Such nulls do not distinguish between the at-
tribute being inapplicable to the tuple and the value is
known to lie in a particular set. A tuple ¢ is at least as
defined as tuple s (¢ > s), if all non-null attributes in o
have matching non-null values in . The null completion
of relation R = {t| (s € R) A (t < 8)}. “No informa-
tion” nulls and null completion are Zaniolo's concepts
[Zaniclo 82).

Null completion induces equivalence classes of rela-
tions for each relation schema. We designate the equiv-
alence class containing the relation R as R. We distin-
guish two particular relations which are members of R:
The maximal representative of R is defined by

R*={t|(3seR)(t<q)).
The minimal representative of R is defined by
R.=(teR|(BseR)(s#tAs21)}.

We now consider definitions of the set theoretic op-
erations. We can define operations on thesc equivalence
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classes that we will call union, intersection, and differ-
ence. These operations take two equivalence classes and
result in an equivalence class. A fourth operation, mem-
bership, takes a tuple and an cquivalence class and has
a boolcan result. We will use the symbols U, A, and
= to represent Zaniolo's [82] operators on these equiva-
lence classes, while U, N, and — will represent arbitrary
definitions of these operators under certain constraints
(to be described later). Similarly, € and € are symbols
for membership. (Choice of a particular membership
operator constrains the choices of the other three oper-
ators.) Although these operators apply to equivalence
classes—the extended relations, their intuitive meaning
is based on how they operate on the members of the
equivalence classes—the ordinary relations with nulls,
Therefore, we will often write R U S when we mean
R §, etc., but we remember that the results of both
of them are extended relations. Since these operators
are well defined on the equivalence classes, it does not
matter which represcntative relation is used.

Using our terminology, we rephrase Zaniolo’s defi-
nitions of union, difference, and x-intersection by sup-
plying representative sets of the resultant equivalence
classes. Union is defined (R U §)* = R* U S*. Differ-
enceis R =~ § = R* ~ S°*. We define x-intersection by
(RA S)* = R°NS*. The definition of membership is
réER=r€eR".

Let us consider a few examples. We will use i to
indicate a null value. Suppose R is (at, b1). Then R*
consists of (a1, b1), (L, b1), (a1, 1), and (1, 1); R,
consists only of (a1,b1). Suppose S is (a1, L). Then
S* consists of (a1, 1) and (.L, 1}); S. consists only of
(al 1). NotethatRUS Rand RAS = S. Also,
TZ£R-S= {(al b1),(l, b1) }. It is interesting to
note that 7' =

With the above examples, we can illustrate that
these definitions do not satisfy some basic theorems in
set theory adapted to these extended relations. In par-
ticular, R = (R = §) 2 R A S [Halmos 60] is not
satisfied: the left side is @ and the right side is S.

Another problem with Zaniolo's approach is that
the definitions do not reduce to the standard definitions
when only fully defined relations are used. For example,
suppose R is (a1,b1) and S is (a1,b2). Then RA S is
(a1, 1), while RN S is 0.

We can consider alternative dcfinitions of the set-
theoretic operators, attempting to find a group that
satisfy the basic theorems of set theory. (For exam-
ple, RA S = (R.N S*)U(R* N S.) reduces to the
standard definition for fully defined relations, but stiil
violates R~ (R~ S)=RNHS.)

3. Theorem

Let us consider some requirements for set-theoretic
operators. The following 5 axioms are adapted from
ordinary set-theory {Halmos 60] for extended relations.

(tER)=(t&S)~R=S (1)
((¢&€R)—~(t&€S) ~RES (2)
tERUS—~tERVLES (3)
tERAS—tERALES (4)
tER-S—tERALES (5)

It is interesting to note that Zaniolo's definitions satisfy
all of these axioms except for (5).

We shall also require several soundness criteria.
First, if a tuple is a member of every relation in an
equivalence class, it must be in the extended relation,
and if a tuple is a member of an extended relation, it
must be in some relation in the corresponding eqv.uvu-
lence class.

teR, ~téR—teR n

Second, extended relations preserve set inclusion.
RCcS—RCS ()
Third, since extended relations are based on relative in-
formation content, only a tuple that is more informative

can determine membcership.

tER—-téE{reR|r2t} ()
The fourth criterion rcquires compactness: if a tuple is

a member of an extended relation, it can be traced to
a single tuple in the original relation.

téER— (3reR)(tE(r})) (vy - -

Note that the leftward implication of the last two crite-
ria can be derived from (2) and (II). Zaniolo’s definitions
satisfy all four of these last criteria.

We shall show that no definition for the four set-
theoretic operators defined on extended relations can
be compatible with (1)-(5) and (I)-(IV).

Theorem. No definitions of the membership, intersec-
tion, union, and difference operators, respectively, de-
fined on extended relations are compatible with (1)-(5)
and (I)-(IV).
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Proof (by contradiction). Suppose that a set of
such definitions exists. Let €, A, U, and = be member-
ship, intersection, union, and difference operators, re-
spectively, defined on extended relations that are com-
patible with (1)-(5) and (I)-(IV).

Fromn (1)-(5), we can derive the following theorems
we shall usc [Halmos 60).

RESARET ~RE(SAT) (6)
(RZS)A(RAS)=0 (7
RS20~ RES 8)

(RES)A(SER)~ (R2S) 9)

(tLER)A(RES) > (t&S) (10)

Lemma. R,NS. &ERAS.

Proof of lemma. We first note that BR. N S, C R..
By (II), R.N S. ¢ R. Similarly, R, N §, C S. By (6),
R.NnS.ERAS.

Intersection. We will show that R A § = R. N S..
Suppose that R A § is not equivalent to R. N S. for
some R and S. Then by the lemma, there exists a tuple
tERASandt¢ R.NS.. Since t ¢ R. N S,, either
té¢R.ortg S, (fte R.andt€ S.,thent € R.NS.,
and by (I), tE R.NS,.) Wedefine R'  ={rc R.|r>
tAtéE{r}}andalso S'={s€ S, |s2tAtE{a})}).
By (IIl) and (IV), ¢t € R’ and ¢t € S'. Then from (4)
we obtain that t € R' N S’'. Suppose R’ — §' = §.
Then by (8), R’ & S’. Similarly, S’ ~ R’ = 0 implies
S'CR.

Case I. Both differences are empty. Then by (9),
R’ £ §’. Since minimal represcntative of an equiva-
lence class is unique, R, = S.. But since R, = R’
and S, = S’ (a subset of a minimal rcpresentative is
still a minimal representative (although of a different
equivalence class)), R’ = S’. Then since R’ C R. and
S$cS,RcR.NS.. Thenté R.NS,. Thisisa
contradiction.

Case II. At least one of the differences is non-empty.
Without loss of generality, assume that R’ — S’ is non-
empty. Thenlet r &€ R' ~ S'. Then r & R’ (by 5) and
{r})CR -8 (By(2and(),t&€T - {t}&T)
We defined R’ above so that ¢t € {r}. Therefore, t €
R =~ S'. By (4) and (10),t &€ (R =~ S') A (R' A §').
This contradicts (7).

Since both cases result in a contradiction, we have
shown :
RAS=R.,NS, ()

Membership. We will show that t € T — ¢t € T,. Sup-
pose that ¢ &€ T but ¢ ¢ T.. Then define R = {re T, |

r2tAt€(r})}andlet §= (¢t} By (IIl) and (IV),
tER By (I}, t€S. Therclore, by (4), tE RN S.
Since t ¢ T, t ¢ R. (Note that R, = Rand S, = §.)
Therefore R, N S, = 8. Consequently, t ¢ R.N S,. But
this contradicts (*). Therefore we have shown

CéTHCET. (»+)

Union. We will show that RU S = R, US,. tERU
S—otERVLES+tER VIES. »teR US, ~
t € R, U S.. Thus, we have shown
RUSZ=R,US, (++9)
Contradiction. Let R = {(a, 1)} and § = {(a, b} }.
We observe that R, = R and §, = S. Now consider
RUS. Using (ss+), T=RUS = {(a,b),(a, 1)}.
But (a, 1) is less informative than (a, b). Therefore,
T. = {(a,b) }. We note that (a, L) € R, yet (a, L) &
T by (#s). This is a contradiction. 2

We have shown that no definitions of the four set-
theoretic operators compatible with extended relations
can be compatible with traditional set theory.

4. Conclusion

Relational database theory relies heavily on ordi-
nary set theory. Intuitively, null completion appears
to be important for dealing with nulls. The previously
proposed approaches that incorporated null completion
were not compatible with set theory, but it was not
known whether a compatible approach existed. We
have shown that, if we adopt null completion, our set
theoretic operators cannot behave according to the in-
tuitive rules of ordinary set theory. We are faced with
the Hobson’s choice between giving up our intuitive def-
initions of set thcoretic operators and giving up null
completion. We suggest that future work attempt to
compensate for the loss of null completion in order to
save the familiar definitions of set theoretic operators.

Bibliography

[ANSI 75] “ANSI/X3/SPARC Study Group on
DBMSs Interim Report,” in SIGMOD FDT
Bulletin, 7:2, 1975. (Fourteen reasons for null
values also in Atzeni and Parker, “Assumptions in
Relational Database Theory,” in Proc. of the ACM
Symposium on Principles of Database Systems,
ACM, (Los-Angeles), March 1982.)

[El-Masri 79] Rame:z El-Masri and Gio Wiederhold,
“Data Models Integration using the Structural

P P

f e a




——

.

Page 4 of 4.

Model,” Proc. of the 1979 SIGMOD Confercnce,
ACM SIGMOD, Boston, June 1979.

[El-Masri 80] Rames ElMasri, On the Design,
Use, and Integration of Data Models, Ph.D.
dissertation, Stanford University, 1980.

[Codd 79] E. F. Codd, “Extending the Database
Relational Model to Capture More Meaning,”
ACM Trans. on Database Systems, 4:4, December
1979.

|[Fagin 82] Ronald Fagin, Alberto O. Mendelzon,
Jeffrey D. Ullman, “A Simpliied Universal
Relational Assumption and Its Properties,” ACM
Trans. on Database Systems, 7:3, September 1982.

[Fagin 83] Ronald Fagin, Jeffrey D. Ullman, and
Moshe Y. Vardi, “On the Semantics of Updates in
Databases,” Proc. of the Second ACM SIGACT-
SIGMOD Symp. on Principles of Database
Systems, ACM, (Atlanta, GA), March 1983.

[Goldstein 81] Billie S. Goldstein, “Constraints on
Null Values in Relational Databases,” in Proc. 7th
Int. Conf. on Very Large Data Bases, (Cannes,
France), September 1981,

[Grant 77] John Grant, “Null Values in a Relational
Data Base,” in Information Processing Letters,
6:5, October 1977.

[Grant 79] John Grant, “Partial Values in a Tabular
Database Model,” in Information Processing
Letters, 9:2, October 1979.

[Halmos 60] Paul R. Halmos, Naive Set Theory, Van
Nostrand, New York, 1960.

{Imielinski 81) Tomasz Imiclinski and Witold Lipski,
Jr., “On Represcnting Incomplete Information in
a Rclational Database,” in Proc. 7th In¢. Conf.
on Very Large Data DBases, (Cannes, France),
September 1981.

(Imielinski 83] T. Imielinski and W. Lipski, Jr.,
“Incomplete Information and Dependencies in
Relational Databases,” in Proc. of .Annual
Meeting: SIGMOD and Database Week, (San
Jose, CA), May 1983; the proceedings appeared as
SIGMOD Record, 13:4, ACM, May 1983.

{Keller 84a] Arthur M. Keller and Marianne
Winslett, “Approaches for Updating Databases

With Incomplete Information and Nulls,” [EEE
Computer Data Engineering Conference, Los
Angeles, April 1984,

|[Keller 84b]  Arthur M. Keller and Marianne Winslett,
“On the Use of an Extended Reclational Model
to Handle Changing Incomplcte Information,”
submitted for publication.

[Lien79] Y.Edmund Lien, “Multivalued Dependencies
with Null Valucs in Relational Data Bases,” in
Proc. 5th Int. Conf. on Very Large Data Dases,
(Rio de Janiero, Brasil), October 1979.

[Maier 80] D. Maier, “Discarding the Universal
Instance Assumption: Preliminary Results,” Proc.
XP1 Workshop on Relational Database Theory,
(Stony Brook, NY}, July 1980.

[Maier 83] D. Maier, Theory of Relational Databases,
Computer Science Press, Rockville, MD, 1983.
{Especially Chapter 12, “Null Values, Partial
Information, and Database Semantics.”)

[Lipski 79] Witold Lipski, Jr., “On the Semantic
Issues Connected with Incomplcte Information
Databases,” in ACM Trans. on Database Systems,
4:3, September 1979.

[Reiter 80] Raymond Reiter, “Data Bases: A

" Logical Perspective,” in Proc. Workshop on Data
Abstraction Databases and Conceptual Modeling,
(Pingrce Park, CO), June 1980, appeared as
SIGMOD Record, 11:2, February 1981.

(Ullman 83] Jeffrey D. Ullman, Principles of Database
Systems, Computer Science Press, Potomac, MD,
second edition, 1983.

[Vassiliou 79] Yannis Vassiliou, “Null Values in Data
Base Management: A Denotational Semantics
Approach,” in Proc. ACM SIGMOD Int. Conf. on
Managemeat of Data, (Boston), May 1979.

[Vassiliou 80] Yannis Vassiliou, “Functional Depcn-
dencies and Incomnplete Information,” in Proc. 6th
Int. Conf. on Very Large Data Bascs, (Montreal),
October 1980.

[Zaniolo 82] Carlo Zaniolo, “Database Relations with
Null Values,” in Proc. of the ACM Symposiumn
on Principles of Database Systems, ACM, (Los
Angeles), March 1982.

Accession For

NTIS GRA&I g
°"o\ DTIC TAB
Unannounced |

Cony
s N
l.,'~“’ Ju tificatior

By
_lzj.stribut;on/
Availability Codes
Avail and/or
Dist Special

S o A dan







